If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5g^2=125
We move all terms to the left:
5g^2-(125)=0
a = 5; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·5·(-125)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50}{2*5}=\frac{-50}{10} =-5 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50}{2*5}=\frac{50}{10} =5 $
| 6x(5x)=6x5x12 | | d^2+12=93 | | (6a+1)+(2a+3)=180 | | .30m+38=74 | | (5p+7)+(4p+2)=180 | | (4t-5)+(9t+3)=180 | | 3x+32=156 | | 2x+30=x+85=180 | | 2x+30=x+85 | | 5x*6=281 | | 15x+120=675 | | Y-6y=8 | | 30+3x=2x-3 | | x/5+13=65 | | -15x=-1 | | 25+8m=23 | | 2f-9=12 | | 6x+9=45x | | 2x3-6x2-x+3=0 | | 5x=3(2x+4)-7x | | -7x-60=x^2+10x | | 90=x-0.1x | | 90=x-0. | | 8/n=2.5 | | 7y=0.21 | | 6y-7y=O | | 12(9=3x)+2x=516 | | 12(9=3x)+2x=5166 | | 7y=5y+15 | | 6y=44- | | 9+2m=16 | | W=4+3p |